Skip to contents

Import data

url <- paste0("https://docs.google.com/spreadsheets/d/"
              , "15r7ZwcZZHbEgltlF6gSFvCTFA-CFzVBWwg3mFlRyKPs/edit#gid=172957346") 

# browseURL(url)

fb <- url %>% 
  gsheet2tbl() %>% 
  rename_with(tolower) %>% 
  mutate(across(c(riego, geno, bloque), ~ as.factor(.))) %>% 
  mutate(across(where(is.factor), ~ gsub("[[:space:]]", "", .)) ) %>% 
  as.data.frame()
# str(fb)

Plot raw data

Box plot

wue <- fb %>% 
  plot_raw(type = "boxplot"
           , x = "geno"
           , y = "wue"
           , group = "riego"
           , xlab = "Genotipos"
           , ylab = "Water use efficiency (g/l)"
           , ylimits = c(5, 30, 5)
           , glab = "Tratamientos"
           )

Scatter plot

hi <- fb %>% 
  plot_raw(type = "scatterplot"
           , x = "hi"
           , y = "twue"
           , group = "riego"
           , xlab = "Harvest Index"
           , ylab = "Tuber water use efficiency (g/l)"
           , glab = "Tratamientos"
           )

Plot in grids

grid <- plot_grid(wue, hi
                  , nrow = 2
                  , labels = "AUTO")

save_plot("files/fig-01.png"
        , plot = grid
        , dpi= 300
        , base_width = 10
        , base_height = 10
        , scale = 1.4
        , units = "cm"
        )

knitr::include_graphics("files/fig-01.png")
Water use effiency in 15 potato genotypes A) Box plot B) Scatter plot.

Water use effiency in 15 potato genotypes A) Box plot B) Scatter plot.

Plot summary data

Leaf area


#> Plot summary data

model <- fb %>% 
  yupana_analysis(response = "lfa"
                  , model_factors = "geno*riego"
                  , comparison = c("geno", "riego")
                  )

lfa <- model$meancomp %>% 
  plot_smr(type = "bar"
           , x = "geno"
           , y = "lfa"
           , group = "riego"
           , ylimits = c(0, 12000, 2000)
           , sig = "sig"
           , error = "ste"
           , xlab = "Genotipos"
           , ylab = "Area foliar (cm^2)"
           , color = F
           )

model$anova %>% anova()
## Analysis of Variance Table
## 
## Response: lfa
##             Df    Sum Sq   Mean Sq  F value                Pr(>F)    
## geno        14 261742780  18695913   33.371 < 0.00000000000000022 ***
## riego        1 788562704 788562704 1407.541 < 0.00000000000000022 ***
## geno:riego  14 108153220   7725230   13.789 < 0.00000000000000022 ***
## Residuals  120  67228987    560242                                   
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

model$meancomp %>% web_table()

Tuber water use efficiency

model <- fb %>% 
  yupana_analysis(response = "twue"
                  , model_factors = "block + geno*riego"
                  , comparison = c("geno", "riego")
                  )

twue <- model$meancomp %>% 
  plot_smr(type = "line"
           , x = "geno"
           , y = "twue"
           , group = "riego"
           , ylimits = c(0, 10, 2)
           , error = "ste"
           , color = c("blue", "red")
           , 
           ) +
  labs(x = "Genotipos"
       , y = "Tuber water use effiency (g/l)"
       )

model$anova %>% anova()
## Analysis of Variance Table
## 
## Response: twue
##             Df Sum Sq Mean Sq F value                Pr(>F)    
## block        1  20.78 20.7770 31.0214          0.0000001609 ***
## geno        14 413.06 29.5046 44.0523 < 0.00000000000000022 ***
## riego        1   2.04  2.0370  3.0414               0.08375 .  
## geno:riego  14  16.07  1.1479  1.7140               0.06138 .  
## Residuals  119  79.70  0.6698                                  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

model$meancomp %>% web_table()

Plot in grids

grid <- plot_grid(lfa, twue
                  , nrow = 2
                  , labels = "AUTO")

ggsave2("files/fig-02.png"
        , plot = grid
        , dpi= 300
        , width = 10
        , height = 10
        , scale = 1.5
        , units = "cm")

knitr::include_graphics("files/fig-02.png")
Water use effiency in 15 potato genotypes A) Bar plot B) Line plot.

Water use effiency in 15 potato genotypes A) Bar plot B) Line plot.

Multivariate analysis

#> Principal component Analysis

mv <- fb %>% 
  yupana_mvr(last_factor = "bloque"
             , summary_by = c("geno", "riego")
             , groups = "riego"
             )
  
# sink("files/pca.txt")
# # Results
# summary(pca, nbelements = Inf, nb.dec = 2)
# # Correlation de dimensions
# dimdesc(pca)
# sink()

ppi <- 300
png("files/plot_pca_var.png", width=7*ppi, height=7*ppi, res=ppi)

plot.PCA(mv$pca,
         choix="var",
         title="",
         autoLab = "y", 
         cex = 0.8,
         shadowtext = T)

graphics.off()

ppi <- 300
png("files/plot_pca_ind.png", width=7*ppi, height=7*ppi, res=ppi)

plot.PCA(mv$pca,
         choix="ind",
         habillage = 2,
         title="",
         autoLab = "y", 
         cex = 0.8,
         shadowtext = T,
         label = "ind",
         legend = list(bty = "y", x = "topright"))

graphics.off()

# Hierarchical Clustering Analysis

clt <- mv$pca %>% 
  HCPC(., nb.clust=-1, graph = F)

# sink("files/clu.txt")
# clus$call$t$tree
# clus$desc.ind
# clus$desc.var
# sink()

ppi <- 300
png("files/plot_cluster_tree.png", width=7*ppi, height=7*ppi, res=ppi)

plot.HCPC(x = clt, 
          choice = "tree")

graphics.off()

ppi <- 300
png("files/plot_cluster_map.png", width=7*ppi, height=7*ppi, res=ppi)

plot.HCPC(x = clt, choice = "map")

graphics.off()

plot.01 <- readPNG("files/plot_pca_var.png") %>% grid::rasterGrob()
plot.02 <- readPNG("files/plot_pca_ind.png")  %>% grid::rasterGrob()
plot.03 <- readPNG("files/plot_cluster_map.png") %>% grid::rasterGrob()
plot.04 <- readPNG("files/plot_cluster_tree.png") %>% grid::rasterGrob()


plot <- plot_grid(plot.01, plot.02, plot.03, plot.04
                  , nrow = 2
                  , labels = "AUTO")

ggsave2("files/fig-03.png"
        , plot = plot
        , dpi = 300
        , width = 12
        , height = 10
        , scale = 1.5
        , units = "cm")

knitr::include_graphics("files/fig-03.png")
Multivariate Analysis: Principal component analysis and hierarchical clustering analysis.

Multivariate Analysis: Principal component analysis and hierarchical clustering analysis.